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Abstract 

 

Through a synthesis of test publisher norms and national longitudinal datasets, this study 

provides new national norms of academic growth in K-12 reading and math that can be 

used to reinterpret conventional effect sizes in time units. We propose d΄, a time-indexed 

effect size metric to estimate how long it would take for an ―untreated‖ control group to 

reach the treatment group outcome in terms familiar to educators—years/months of 

schooling. It serves as a supplement to conventional effect size metrics such as Cohen’s d 

by taking into account different amounts of time needed for learning at different age or 

grade levels. Through applications to Project STAR small class effects and NAEP racial 

achievement gaps, we demonstrate how to interpret and use d΄. It is expected to provide a 

more developmentally appropriate context for interpreting the size of an effect, a step 

toward bridging the gap between educational research and practice. 

 

Keywords: effect size, time-indexed effect size, d΄, national norms, academic growth  
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The concept of effect size is ubiquitous within the scholarly research community. 

While the term effect size can have many operational definitions in scientific research, it 

is most commonly used to describe standardized measures of an effect’s magnitude (e.g., 

correlation coefficient, Cohen’s d, odds ratio, etc.). Standardized effect size measures are 

typically used when the metrics of those variables being studied do not have intrinsic 

meaning to the reader (e.g., a scale score on an achievement test) or when results from 

multiple studies using different scales are being considered for meta-analytic synthesis. 

While there has been much discussion of the role and function of effect sizes in social 

and behavioral research, there is general agreement that effect sizes are valuable tools to 

help evaluate the magnitude of a difference or relationship, particularly, whether a 

statistically significant difference is a difference of practical concern (see Cohen, 1994; 

Kirk, 1996; Schmidt, 1996; Thompson, 1996; Wilkinson & APA Task Force on 

Statistical Inference, 1999). Accordingly, effect size reporting has now become a de facto 

requirement for publication. Researchers are asked to provide readers with information to 

assess the magnitude of the observed effect or relationship as the basis of judgments 

about practical or clinical significance in conjunction with statistical significance testing 

(APA, 2001; Knapp & Sawilowsky, 2001; Thompson, 2001).  

Although unstandardized measures such as mean differences can serve as effect 

size measures, the use of arbitrary scales for measuring student achievement outcomes 

can have unintended consequences for communicating educational research findings to 

practitioners who may lack intimate knowledge the meaning of scale scores as well as of 

standardized effect size measures. One unstandardized effect size measure familiar to 

educators—years and months of schooling—has not been reported and used in the 
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literature on research synthesis (Cooper & Hedges, 1994). Instead, Cohen’s (1988) rule 

of thumb is often applied out of context, following the rule that a medium effect (d = .5) 

is conceived as one large enough to be visible to the naked eye and thus important in a 

practical sense. However, it is still challenging for the lay person and even practitioners 

to translate a metric representing a standardized group mean difference on a more 

familiar yardstick such as years/months of schooling.   

This work creates a context for determining the extent to which an effect 

represents a substantial gain in test scores. Prior research has demonstrated the theoretical 

and practical importance of time for learning (see AERA, 2008; Berliner, 1990; Bloom 

1976; Carroll, 1963; Fisher, 1980; National Education Commission on Time and 

Learning, 1994; Smith et al., 2005). However, as children progress through higher grades 

in school, their academic growth rates change and thus the time needed to learn any 

particular topic also changes. National norming research, based on data from 

standardized K-12 reading and math achievement test publishers, reveals common 

patterns of academic growth across tests. Overall, there is a general deceleration of 

achievement growth over the entire course of schooling, even though the patterns of 

growth differ from subject to subject or from grade to grade (see Beggs & Hieronymus, 

1968; CTB/McGraw-Hill, 1997, 2003; Harcourt, 2002, 2004; Lee, 2010; Lichten, 2004; 

McGrew & Woodcock, 2001). 

The present research uses time-varying academic growth, applied to specific 

studies to address the question: ―How much time is needed for students in the control 

group to catch up with students in the treatment group?‖ In other words, this raises the 

counterfactual question: ―If students in the treatment group had been assigned to the 



 4 

control group instead, how much extra time would have it taken for them to reach the 

level of learning actually achieved at the end of their treatment?‖ Since we cannot 

directly observe a treatment group’s outcome under the control condition during an 

experiment, it would be necessary to create a control group similar to the treatment group 

through random assignment and/or matching. A randomized  trial would allow the 

researcher to draw inferences about causal effects based on the comparison of two 

separate outcomes in time units, one with treatment (observable) and the other without 

treatment (unobservable from the treatment group but estimated from the  control group).  

Matched samples, carefully selected, are intended to approximate the same kind of 

conclusion. 

The rationale for time-indexed assessment of effect sizes also comes from the 

likelihood of greater environmental effects or intervention effects at the earlier stage of 

development when the pace of academic growth is relatively faster (Bloom, 1964; Ramey 

& Ramey, 1998). Time-indexed effect size would enable educational researchers to more 

accurately assess effect sizes in the context of students’ developmental stage or grade 

level when the intervention occurs. Time-indexed effect size estimation may also provide 

new insights into post-treatment follow-up evaluation of treatment effects. Research has 

often shown that an effect is not sustainable or decaying after a treatment (e.g., large-

scale preschool programs) is over (Barnett, 1995; Lee et al., 1990). However, if one takes 

into account the possibility that academic growth tends to become slower at the higher 

ages or grades regardless of treatment status (i.e., general deceleration of growth rate over 

time), post-treatment reductions in the gap between treatment group and control group 

may be interpreted differently. After treatment termination, a time-indexed effect size 
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may not diminish as much as a conventional effect size if the growth rate of the control 

group also slows down over the same period. 

This study contextualizes an effect-size-like index of educational treatment effects 

or any group mean differences in academic achievement by referencing time. The new 

effect size metric can enrich effect size interpretations while serving as a supplement (but 

not substitute) for conventional standardized effect size measures. Specifically, we 

introduce a new time-indexed effect size metric (d΄) based on the notion of time-varying 

academic growth trajectories in K-12 reading and math as evidenced through empirical 

analyses of U.S. test publisher norms and national longitudinal datasets. We take an 

approach to the validation of this new index by employing (1) interpretive arguments 

(i.e., specification of proposed interpretations and uses of the index) and (2) validity 

arguments (i.e., evaluation of the interpretive arguments based on evidence) (see Kane, 

2006). First, we provide a framework for calculations and interpretations of a time-

indexed effect size based on two different designs of educational research/evaluation: 

pretest-posttest or repeated measures designs and posttest only designs. Then we examine 

conditions of existing test publisher norms in applying this new index in practice, such as 

problems with cross-sectional and aggregated data, and explain the rationale for new 

national norms of academic growth. We present methodological steps for developing 

longitudinal norms of growth and converting d into d΄. Third, as one element of the 

supporting validity evidence, we demonstrate how to interpret and use d΄ through 

applications of the time-indexed effect size metric to well-known research examples. The 

results of d and d΄ for the same studies are compared and cross-validated. Last, we 
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discuss threats to validity, caveats, and ameliorative strategies for valid interpretations 

and uses of the time-indexed effect size.  

Conceptual and Analytical Framework for Time-indexed Effect Size Index 

d΄  for pretest-posttest or repeated measures designs 

In an experimental or quasi-experimental research design using both a pretest and 

a posttest, academic growth between the two time points is estimated using the control 

group gain as the basis of a time-indexed effect size calculation. Figure 1 illustrates the 

concept and measurement of time-indexed effect size based on hypothetical linear 

patterns of growth for an experimental group (E) and a control group (C). Assuming that 

both groups have the same average pretest scores, Y
E  

and Yc
 represent the average 

posttest scores of the outcome variable Y for the experimental group and control group 

respectively. Unlike a conventional effect size measure that focuses on the group 

difference on the vertical axis (outcome variable), we shift the focus to the horizontal axis 

(time variable). The time-indexed effect size (d΄) is the extra time (in school 

years/months) needed for the control group to reach Y
E
, the level of outcome that the 

experimental group has reached at the end of treatment (see Figure 1): 

d΄ = T2 – T1  (1) 

where T2 = time needed (in school years/months) for the control group to reach Y
E
 from 

baseline (time zero);  T1 = time spent (in school years/months) for the experimental group 

to reach Y
E
 or for the control group to reach Y

c
  from the baseline (time zero) 

Figure 1 about here 

If the growth trajectory during the treatment period is assumed to be linear (at 

least for each school year for multi-year treatment study), one can estimate a constant 



 7 

growth rate for each grade and get a single estimate of a treatment effect on the 

achievement gain per grade. The linear growth model for the control group can be 

expressed as Y = b0 + b1 (Time), where b0 = the control group’s average initial status 

when Time is equal to zero and b1 = the control group’s average growth rate per time unit 

(school year/month). In this case, equation (1) for time-indexed effect size d΄ can be 

solved by substituting T1 and T2 as follows: 

d΄ = T2 – T1 = 
1

0

1

0

b

bY

b

bY CE 




=  
1

b

YY CE 

  (2) 

This equation can be translated into familiar terms below: 

     

 d΄ = 
rategrowth  group Control

effect Treatment 
  (3)  

              

There is a limitation in relying exclusively on a study’s own sample data to 

estimate how long it would take for the control group to attain a particular outcome. The 

treated group or the control group or both may have growth patterns unlike those of the 

larger population they represent. If the sample is a convenience sample or drawn from 

particular schools, it may be affected by local conditions including unique characteristics 

of the community in which students live or unique features of the schools’ curricula and 

policies and the quality of instruction provided. This is also the case in randomized 

experiments in which both the experimental and control groups have been subjected to 

other school-wide or district-wide interventions.  A control-group intervention may also 

be planned.  For example, in Tennessee’s class-size experiment, Project STAR, the full-

size classes (i.e. the control group) were reduced by only several students to allay 

parents’ fears that their children were being penalized by virtue of the experiment being 
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housed in the same schools (Word et al., 1990). It is important to assess not only the 

gains of treatment groups relative to the taken-for-granted control group, but also the 

gains of control or comparison groups relative to meaningful reference scales such as 

national/state norms. This broader contextual information on academic growth also 

would help guide efforts for scaling up the intervention beyond particular local study 

settings and time period.  

d΄ for posttest-only design 

When using a posttest-only design, the researcher does not have information on 

growth during the treatment time period, and thus cannot directly predict how long it 

would take for the control group to reach the treatment group’s outcome Y
E
 under normal 

schooling conditions. One may attempt to search for similar prior research with pre-post 

test or repeated measures design, if available, to estimate typical control group gains 

under similar study circumstances (e.g., school location, racial and economic composition 

of study body, etc.). Alternatively, the researcher may attempt to estimate control group 

gains based on preexisting national norms of academic growth if the achievement test 

used for norms taps into the same construct and the national standardization sample 

matches the study’s own sample well.   

Standardized achievement test norms often use developmental scales that report 

student performance as grade- or age-equivalents (Kolen, 2006). Grade-equivalent (GE) 

or age-equivalent scores provide information about how a child's performance compares 

to that of other children at various grade or age levels. Age-equivalent or grade-

equivalent scores can be obtained directly from a test publisher’s manual or by fitting a 

curve of mean or median scale scores to the year and month of schooling in which the 
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test was taken (Schulz & Nicewander, 1997). Treatment effects are sometimes reported in 

terms of grade- or age-equivalent units, particularly in research using posttest-only 

designs (Finn et al., 2001; Gormley et al., 2005). The use of GE and Item Response 

Theory (IRT) metrics lead to different representations of individual differences in growth 

trajectories and thus different decisions about the efficacy of educational programs 

(Seltzer, Frank & Bryk, 1994).
1
   

Critics of GE metrics pointed out that with most test and scaling designs, a 

student who scores two years above her grade level on a test designed for her grade 

would not necessarily score at the average on a form designed for two grades higher 

because of curriculum-related differences in test content (Peterson, Kolen, & Hoover, 

1989). However, reasonable accommodations can be made to developmental grade-level 

scores (Osterlind, 2006). The procedures that educational testing companies use to cope 

with the problems associated with conventional GE metrics include IRT-based vertical 

equating procedures based on sufficient test overlap between adjacent test levels and 

students from multiple grades who take the tests as a combined norming sample. As long 

as GE metrics are constructed properly and used for the sake of group comparison within 

an applicable range of grades, they have the potential to advance more developmentally 

appropriate evaluation of educational program effects.  

While debates about the use of GEs focused largely on the interpretation of 

individual students’ scores, GEs are a useful way to compare the means of several groups 

at a particular grade level, and can be interpreted in terms familiar to educators—months 

of schooling (Finn et al., 2001). While there still remain other limitations (e.g., outdated 

and aggregated national norms based on cross-sectional data), the merits of these 
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underlying ideas remain valid. Indeed, existing national norms from test publishers can 

provide general reference points since the tests not only have been widely used in many 

school districts across the nation, but are also derived from nationally-representative 

norming samples with vertical scales of achievement; the norms usually cover every 

grade from K to 12 with test administrations in both fall and spring. Some researchers 

have attempted to use such test norms to establish grade-referenced benchmarks for effect 

size interpretations in core subjects (Bloom, Hill, Black & Lipsey, 2008). Although the 

test publisher data provide useful references of academic growth for all grades in many 

subjects, those norms derived from cross-sectional snapshot data from multiple cohorts 

may not accurately represent true longitudinal growth by confounding cohort effects and 

grade effects. Further, test publisher data is aggregated, and lacks information on student 

subgroup differences in growth norms. This prevents researchers from using matching or 

other adjustment methods that would take into account possible differences between their 

study sample and national norming sample. 

Cross-sectional vs. Longitudinal Data-based Norms of Academic Growth 

In this study, we constructed national norms of academic growth for K-12 reading 

and math achievement through meta-analytic synthesis of existing cross-sectional test 

publisher norms and existing longitudinal datasets (see Appendix for descriptions of the 

tests and standardization samples). Test publisher norms are based on seasonal testing 

schedules that can provide gains from fall to spring within same school years and then 

gains (or losses) from spring to fall between adjacent school years. In contrast, national 

longitudinal data usually are based on annual or biennial (or even longer time span) 

testing schedules that only provide gains between adjacent or remote school years. This 
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study capitalizes on information from the combination of three separate test publisher 

norms of reading and math achievement for K-12 students: Stanford Achievement Test 

(SAT), TerraNova (TN), and Metropolitan Achievement Test (MAT). These all employ 

IRT vertical scaling methods for equating across grades and provide comparable 

measures of reading and math achievement across grades within tests as well as between 

tests.  

We also used two national longitudinal datasets, the Early Childhood 

Longitudinal Study-Kindergarten (ECLS-K) and the National Education Longitudinal 

Study of 1988 (NELS:88) and to construct our own national norms of academic growth. 

These two National Center for Education Statistics (NCES) datasets provide information 

on a child’s academic growth along with background characteristics of the child, family, 

and school. The ECLS-K, launched in 1998, followed academic growth trajectories from 

Kindergarten to grade 8. The NELS, launched in 1988, tracked individual students’ 

academic growth from grade 8 to grade 12.  

Longitudinal analyses of the ECLS-K and NELS databases were carried out with 

data weighted by appropriate panel weights.  Analysis of a weighted sample provides 

results that are representative of the population from which participants were drawn. In 

order to track reading and math achievement for the ―typical‖ student (i.e. those who 

spent one year in kindergarten, and who entered grade 1 the following year and grade 3 

two years later, etc.), students who were repeating kindergarten in 1998, or who were not 

in Kindergarten, grade 1, grade 3, grade 5, and grade 8 at the time of each spring follow-

up assessment, were not included in the analysis. The sample size for the analysis of the 

ECLS-K data was 5,959. As with the selection criteria for ECLS-K data, the NELS 
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sample used for this study was comprised of only students who were in grade 8 for the 

first time in the fall of 1988, and who were in grade 10 in the spring of 1990 and in grade 

12 in the spring of 1992. Students who were retained in any grade, 8 through 12, who 

dropped out, or who graduated ahead of their class were excluded. The sample size for 

the analysis of the NELS:88 data was 10,879. Examination of the growth curve was 

carried out using the IRT estimated number right scores for reading and math in the 

respective surveys.  

Synthesizing National Norms of Academic Growth in Reading and Math 

The cross-sectional and longitudinal data revealed that the patterns of academic 

growth are not always consistent from subject to subject and from grade to grade. 

Nevertheless, there are some common patterns of growth across tests such as decelerating 

growth over the course of schooling. Figures 2 and 3 show national average K-12 reading 

and math achievement trajectories, with cumulative gain scores from fall K through 

spring grade 12 in standard deviation units, across all five tests. For the sake of 

illustration, we juxtapose ECLS-K curves (for K-8) and NELS curves (grades 8-12) 

together to show possible full K-12 range of longitudinal growth trajectories; they are 

combined by adding NELS 8-12 gains on top of ECLS-K K-8 gains, based on the fact 

that they both used comparable grade 8 spring reading and math assessments.
2
 It needs to 

be noted that the values of vertical axis on Figures 2 and 3 include both school year and 

summer gains across K-12, whereas time-indexed effect size calculations shown later use 

only the school year portion of the gains in individual grades separately and thus does not 

involve any statistical linking between ECLS-K and NELS.  
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There is a high degree of consistency between test publisher norms; all three tests’ 

growth curves are highly similar in both subjects. In contrast, the comparison of test 

publisher norms with longitudinal growth norms shows discrepancies. It suggests that 

cross-sectional data may underestimate real gains over time during the elementary grades 

that longitudinal data are better able to capture. Particularly, the ECLS-K growth curve 

outpaces test publisher growth curves. During high school (grades 8-12), however, the 

gains are not substantially different between NELS and other standardized tests. By and 

large, the gap between the two types of growth norms begins to widen during the early 

elementary school period with different growth rates and sustains through high school 

level.  

Figures 2 and 3 about here 

We combined the multiple sources of data to create our own adjusted national 

longitudinal norms of academic growth. Based on the new national norms, we built a 

table of conversion for translating standardized group mean differences (Cohen’s d) into 

years/months of schooling (d΄) by subject and grade (see Table 1). The process of 

constructing national longitudinal growth norms followed three stages: (1) reanalysis and 

synthesis of existing national test publisher norms (SAT, MAT and TN), (2) creation of 

national longitudinal growth norms (ECLS-K and NELS:88), and (3) synthesis of stage 

(1) and (2) results to construct adjusted longitudinal growth norms.  

Table 1 about here 

The first stage involved several steps. First, estimates of the standardized reading 

and math achievement scores were obtained for each norming sample in the fall and 

spring of grades K-12. Second, standardized achievement gain scores during the school 
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year (i.e., between fall and spring assessments in the same grade) and summer (i.e., 

between spring and fall assessments between adjacent grades) were obtained by 

computing the mean scale score differences between two time points and dividing them 

by pooled standard deviations (i.e., pooling two standard deviations from adjacent 

assessments). The fall-to-spring standardized gain scores were adjusted for the difference 

in testing time intervals (approximately 6-7 months) to obtain full 10-month equivalent 

school year gain. The formula for 10-month school year standardized gain, g is as 

follows:  

g =
 

   
































tss
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tt

tt 10

22
1

2

1
  (4) 

where tY = mean of test score at time point t; ts2
= variance of test score at time point t; 

Δ(t )= elapsed time in months between two successive rounds of assessments at time t 

and t+1. 

Third, average yearly achievement gain scores were calculated by averaging the g 

values across all three tests for each grade and subject. The averaging of all three tests’ 

growth norms was weighted by their approximate norming sample sizes (weight = .20 for 

MAT, .34 for TN, and .46 for SAT).
3
 The end product of this first stage synthesis, gc, 

appears as ―cross-sectional growth norms‖ in the column (1) of Table 1.  

The second stage created national norms of academic growth based on the 

analysis of ECLS-K and NELS:88 data. We created standardized measures of reading 

and math achievement gain scores (in pooled standard deviation units) between 

successive grades. Because ECLS-K and NELS assessments do not cover all grades, 

gains were computed only between successive waves of assessments available in the 
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datasets (i.e., fall K-spring K, K-grade 1, grades 1-3, grades 3-5, grades 5-8 in ECLS-K; 

grades 8-10 and grades 10-12 in NELS). We used equation (4) to compute g values with 

descriptive statistics of academic growth for all students as well as by subgroups as 

classified by key background variables (gender, race/ethnicity, poverty, parent education, 

school type and location). Annual growth rates were estimated by dividing standardized 

test score gains by elapsed time in months between successive waves of assessments, and 

multiplying by 10 to obtain the full school year gain.  

However, the assumption of linear growth (equal increment to achievement by 

grade) during any missing grades was not supported by decelerating growth patterns 

reported in the test publisher norms and prior research. Moreover, the well-known 

phenomenon of unequal growth between school year and summer break periods (Cooper 

et al., 1996; Alexander, Entwisle, & Olson, 2001; Heyns, 1978) also made it difficult to 

estimate gains during school years only based on total gains measured between the spring 

of two different grades that did not separate school year and summer periods.  

To address these limitations, the third stage involved  adjusting the longitudinal 

growth norms based on the first stage  results, that is, the distribution of school year (fall 

to spring) and summer (spring to fall) gain scores for each individual grade from cross-

sectional test publisher norms. Except for ECLS-K kindergarten and grade 1 data with 

both fall and spring assessment measures, we incorporated cross-sectional grade-by-grade 

norms into longitudinal norms for grades 2-12. Based on a high  correlation between 

cross-sectional and longitudinal gains (r = .88 for reading and r = .78 for math), it was 

reasonable to assume that, despite overall discrepancy in the size of total gains, 
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longitudinal growth norms followed the same distributions of gains as cross-sectional 

norms in terms of the proportion of growth in any given month.  

Specifically, we retained the value of total multi-grade gains obtained from the 

second stage longitudinal data analysis, but prorated the total gains according to the 

relative proportion of grade-by-grade increments from the first stage analysis. For 

example, the second stage analysis of ECLS-K data showed the overall standardized 

reading achievement gain of 2.17 between spring grade 1 and spring grade 3. The 

corresponding total gain during the same 2-year period from the first stage analysis of test 

publisher norms was 1.51, which can be broken down into four subperiods: .05 during 2-

month summer before grade 2 (3.2%), .86 during 10-month school year in grade 2 

(56.8%), .04 during 2-month summer before grade 3 (2.7%), .57 during 10-month school 

year in grade 3 (37.3%). We borrowed this information about the percentages of school 

year gains and divided the ECLS-K grades 1-3 total gain of 2.17 into 1.23 (g = 56.8% of 

2.17 = 1.23) for grade 2 and .81 (g = 37.3% of 2.17 = .81) for grade 3; the rest are 2-

month summer gains in each grade not used for the d΄ calculation. In the same way, we 

computed percentages and estimated gains in reading and in math for each of the other 

grades.    

The end product of the third stage analysis is gl, labeled as ―longitudinal growth 

norms‖ in column (2) of Table 1. These final g values (estimated standardized gains per 

school year) were used as a denominator to convert d (standardized group mean 

differences) into d΄ (years/months of schooling) in corresponding subjects and grades, 

using the formula:   

d΄ = 
lg

d
 (5) 
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For quick reference, we constructed a table of conversions (see Table 2). Three 

common benchmark values of Cohen’s d (0.2 for small effect, 0.5 for medium effect and 

0.8 for large effect) were converted into years/months of schooling by dividing d values 

by corresponding gl values in Table 1. We followed the same steps to construct the 

conversion table for demographic subgroups based on their national longitudinal growth 

norms, adjusted for the weighted average of multiple national test publisher norms.   

Table 2 about here 

Although the values of d΄ and d can change in the opposite directions from a 

lower grade to the upper grade as a result of diminishing growth rate, they should have 

the same signs at the same grade. Since the value of standardized gain per year is positive 

for every grade, positive treatment effect would always produce positive value of d΄. If 

the treatment effect is zero, then d' also becomes zero. If the treatment effect is negative, 

then d' is also negative. A zero value of d΄ means that there is no gain or loss in time, 

while any negative value of d΄ suggests that there is time lost as a result of the treatment. 

According to the conversion table for reading, the effect size for a reading 

program with d=0.2 (i.e., 20% of one standard deviation) in Kindergarten would be 

equivalent to one month of schooling (d΄ = 0.1). The same “small” effect turns into the 

longer time of schooling at upper grades: the effect size of .2 would become worth four 

months (d΄ = 0.4) in grade 4, one year in grade 8 (d΄ = 1.0), and three years plus four 

months (d΄= 3.4) in grade 12. For a math program with a small effect (d=0.2), the time-

indexed effect size would vary from one month (d΄ = 0.1) in Kindergarten, three months 

(d΄ = 0.3) in grade 4, nine months (d΄ = 0.9) in grade 8, and one year plus three months 
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(d΄ = 1.3) in grade 12. For both reading and math growth norms, the time-indexed effect 

size tends to increase gradually over the course of schooling until grade 12.  

An exceptional spurt occurs at grade 12 due to the fact that, according to the 

publishers’ norms, achievement gains between grade 11 and grade 12 dropped 

substantially and the growth curve becomes almost flat On the other hand, the 12
th

 grade 

anomaly seems to be more serious in reading than in math as a result of relatively faster 

rate of growth in math than in reading. In any case, extra caution is needed when 

applying our national norms or conversion table to studies that involve grade 12. 

We followed the same procedures to explore subgroup differences in academic 

growth trajectories. Achievement gaps between subgroups (e.g., race and parental 

education) emerged at the beginning of kindergarten and tended to widen to some extent 

over the course of schooling. Table 3 illustrates separate estimates of average growth 

rates for different racial/ethnic groups based on their longitudinal growth trajectories. 

However, it remains to be examined whether differences between student subgroups 

warrant different growth norms and how such separate norms might be applied to 

educational program evaluation. 

Table 3 about here 

Applications of Time-indexed Effect Sizes 

Example of experimental research: Project STAR class size effects 

In this section, an application of time-indexed effect size measures to 

experimental research is demonstrated by using data from Project STAR, the Tennessee 

Class Size Reduction Study 1985-1988 K-3 data files. Project STAR involved 

randomized controlled trials of class size reduction with about 6,500 students in K 
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through 3
rd

 grade from 79 schools in 42 Tennessee school districts; students were 

randomly assigned to either a smaller class (13 to 17) or a larger class (22 to 26). 

Standardized tests used for reading and math achievement measures were the Stanford 

Achievement Tests (SAT; Psychological Corporation, 1985). A previous study using the 

STAR data found that students attending small classes performed better academically on 

all achievement tests in each grade compared to students in regular-size classes (Finn et 

al., 2001).  Effect sizes were expressed in grade equivalents using the SAT norms based 

on a series of cross-sectional norming samples. These indicated that the benefits 

increased with each additional year a student spent in a small class.  

Our analyses reexamined the effects of small class on SAT total reading and total 

math scores, and compared the results based on two different effect size metrics, d and d΄. 

Our results differ from those of Finn et al. (2001) in several ways. First, the sample used 

here included only 2,432 students who participated in the study for four consecutive years 

beginning in kindergarten and remained in the same class type (small or regular). Second, 

in contrast to grade equivalents, the d΄ scale is based on longitudinal growth norms that 

show more rapid growth than do test publishers’ norms, and this results in smaller time-

indexed effects.   

Figures 4 and 5 demonstrate how the effects of small classes in Project STAR 

changed from K to grade 3 as a result of the choice of different effect size metrics. The 

upper panel of Figure 4 (reading) and Figure 5 (math) is based on Cohen’s d, group mean 

differences in standard deviation units, showing that small classes were beneficial for 

both subjects in all grades. In reading for all students, the small-class advantage declined 
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in grade one and grade two and increased in grade three. In math for all students, the 

small-class advantage decreased in each subsequent year.   

The lower panel of Figure 4 and Figure 5 is based on time-indexed effect size d΄, 

group mean differences in units of school years. These results show that the small class 

effect in reading remained fairly stable in grades K through two and increased in grade 3.  

We estimate that it would take students in larger classes about two and half months to 

catch up to the reading performance of students in small classes in grade three.  In math, 

the results did not deteriorate after kindergarten but remained stable through third grade.  

In each grade, we estimate that it would take students in larger classes about one and half 

months to catch up to the performance of students in smaller classes.   

Figures 4 and 5 about here 

For the lower panel of Figure 4, this study applied our longitudinal growth norms 

instead of the test publisher’s national norms to calculate time-indexed effect sizes.  

Applying national norms as opposed to local norms to calculate time-indexed effect size 

could be potentially misleading and biased if there are significant differences between the 

national and local samples in their social demographic and educational profiles which can 

influence academic growth curves.  

Project STAR researchers did not examine control group’s gain relative to the 

national test publisher norms, but this study compared some characteristics of the STAR 

sample to national figures. The STAR sample had different demographic profiles from 

both test publisher standardization sample and our longitudinal sample.
4
 It appears that 

the average student in the STAR sample had socioeconomic and academic disadvantages 

relative to the average student in the national population. This raises a question about the 
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assumption that the control group in the STAR sample would have had the same reading 

and math growth trajectories as students across the U.S.   

According to several analyses of the STAR data (Finn & Achilles, 1989; 

Goldstein & Blatchford, 1998; Hedges, Nye, & Konstantopoulos, 2000), minorities or 

students from low-income homes benefitted more from attending small classes than did 

students who were White or from higher-SES homes. Thus we computed time-indexed 

effect sizes for Black and White students using our separate growth norms for these 

groups (see Table 3). Those subgroup results are shown in Figures 4 and 5. For White 

students, the patterns of d were uneven across the grades in both subjects.  The time-

indexed effect sizes d΄ was somewhat more even across the grades, especially for 

mathematics.  All effect-size measures except one were larger for Black students than for 

white students. The difference between d and d΄ was more evident for Black students 

than for White students.  Cohen’s effect-size measure in reading was stable from 

kindergarten through second grade and then increased in grade 3.  The time-indexed 

measure, however, indicated that more time was needed to catch up in grade two than in 

grade one, and more in grade three than in grade one—indeed, almost half of a school 

year (5 months). In math, d increased from kindergarten to grade one and then decreased 

in each subsequent year.  The time needed to catch up (d΄), however, increased 

monotonically with each additional year. Black students benefit from early grade (K-3) 

small classes, up to a maximum of 4 months.  In brief, we note that (1) the ds for Black 

students are higher than for White students and the d’ even more so, and that (2) even 

though the ds for Black students are relatively flat over the four grades, the d΄s increase 
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considerably; in the same vein, even though the ds for White students decline over the 

four grades, the d΄s remain more constant and stable. 

Example of nonexperimental research: NAEP racial achievement gaps  

Achievement gaps constitute important barometers in educational and social 

progress. The National Assessment of Educational Progress (NAEP), the so-called 

nation’s report card of student achievement, provides information on the achievement 

gaps among different racial and socioeconomic groups in core academic subjects. Despite 

the advantage of providing national snapshots, NAEP is cross-sectional, and thus does 

not allow us to track changes in the size of gap for the same cohort of students. Using 

longitudinal data sets, prior research on Black-White achievement gap showed that the 

racial gap in reading and math emerges prior to school entry and widens over the course 

of schooling (Fish, Lee, & Chilungu, 2007; Fryer & Levitt, 2004; Philips, Crouse, & 

Ralph, 1998). However, the size of change in racial achievement gap has been often 

reported and interpreted in terms of standardized group mean differences so that 

information on its practical significance was not clear and straightforward. Our 

understanding of the widening Black-White achievement gap phenomena can be enriched 

with uses of time-indexed effect size metric based on national longitudinal education 

datasets which provide information on academic growth in core subjects. 

While the gap between White and Black student groups persist across grades, it is 

clear that the racial achievement emerges prior to school entry and widens to some extent 

over the course of early elementary education. The absolute size of the Black-White 

achievement gap (as measured by IRT scale score differences) appears to widen slowly, 

but this assessment would underestimate the practical significance of the widening gap. 
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How long would it take for Black students to catch up to the current performance level of 

their White peers? If we evaluate the achievement gap from the viewpoint of ―time 

needed to catch up‖ (based on ―Black‖ annual growth rate gl-b), it becomes clear that the 

gap widens at a more rapid pace making it harder and harder to narrow over time.  

Table 4 shows contrast of changes in Black-White reading and math achievement 

gaps in the original NAEP scale score units, standard deviation units (d) and school 

year/month units (d΄). The Black-White gap in d remains largely constant from grade 4 

through grade 12 in both subjects.  In contrast, the gap in d΄ increases about 9 times in 

reading and 5 times in math during the same schooling period. The exponential increase 

of time-indexed achievement gap is attributable to the rapid deceleration of academic 

growth rates at the upper grades. In reading, the Black-White achievement gap may be 

equivalent to one and half years of schooling (d΄=1.48) at grade 4 when Black students’ 

academic achievement grows fast (gl-b=.48), and the gap would enlarge to 4 years and 6 

months (d΄=4.65) at grade 8 when their growth rate slows down to .17. Then it becomes 

thirteen and half years (d΄=13.6) by the end of grade 12 when Black students’ academic 

growth almost stalls (gl-b =.05). In math, the Black-White gap in d΄ increases from 1 year 

3 months to 3 years and 4 months and then to 6 years and 3 months between grades 4, 8 

and 12.    

Table 4 about here 

The 12
th

 grade Black-White gaps in school year units are incredibly large and they 

represent extra amount of time needed for average Black 12
th

 graders to reach the current 

achievement level of average White 12
th

 graders. This estimate is based on a hypothetical 

situation where Black 12
th

 graders would continue to learn content in the same grade and 
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maintain the same growth rate. The achievement gap may reflect corresponding content 

gap in terms of advanced course-taking. For example, according to the 1999 NAEP 

survey of 17-year-olds, about two-thirds of White students had taken algebra II or 

precalculus/calculus, whereas only 56 percent of Black students had done so (Campbell, 

Hombo, & Mazzeo, 2000). Nevertheless, the time-indexed measure of Black-White 

achievement gaps may have been exaggerated if Black students’ true academic growth 

rates were underestimated due to possible deterioration of test-taking motivation at the 

end of high school. The validity of interpretations remains questionable, since they may 

not be meaningful in light of the entire growth trajectory; the 12
th

 grade growth rate of 

being near zero is an unexpected deviation from slow but steady pattern of achievement 

gains observed during the lower grades in high school.  

Validation and Limitations of Time-indexed Effect Size 

The index, d΄, is proposed as a supplement rather than an alternative to d, the 

usual effect size index for comparing two groups.  Essentially, the index estimates the 

additional time that the control group would need to reach the attainment of the treatment 

group. The validation of the proposed time-indexed effect size requires evaluation of its 

assumptions, including implicit or hidden assumptions (Kane, 2006). 

We proposed to interpret an effect size that communicates the time in years and 

months for the control group to catch up to the treatment group. The time-indexed effect 

size assumes (a) linear growth by the control group over time at the rate estimated for that 

particular grade and (b) no movement by the treatment group.  Both assumptions (a) and 

(b) may not reflect realities and there may be more plausible alternatives. Some 

practitioners might plausibly interpret the "catching up" scenario to involve alternatives to 
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(a) for example, that control groups would suddenly be given the treatment or otherwise 

alternative trajectory) or (b) for example, that the treatment group continues to grow while 

the control is catching up.  The assumption (a) does not mean that the control group 

continues to have the same growth rate in subsequent grades. Without any special 

intervention beyond regular schooling, both cross-sectional and longitudinal growth curves 

show that sustained linear growth is clearly not the case. Since the growth trajectory 

changes over time, it is difficult to predict the future changes beyond the current grade in 

which a particular study collected data. The assumption (b) does not suggest that the 

treatment group’s outcome observed at the end of treatment remains constant. Without 

invoking any ungrounded predictions of possible future changes beyond a study period, our 

index is intended to give current estimate of the learning gap in time based on actual 

observed growth rate at the same grade in which the test score gap occurred. We 

acknowledge that this is not the only way that a time-indexed effect size could be 

constructed, and caution should be exercised in the interpretation of d'. 

The use of a time-indexed effect sizes requires that measures of academic 

achievement be on common scales that allow the researcher to compare an individual's or 

a group’s performance at different time points. It is difficult to find interval scale 

measures that are equally applicable, reliable, and valid in children of various ages and 

that are known to measure the same construct at different ages (Baltes, Reese, & 

Nesselroade, 1977; Bergman, Eklund, & Magnusson, 1991; McCaffrey et al., 2003; 

Peterson, Kolen, & Hoover, 1989; Schaie, 1965). A fundamental premise of vertical 

scaling is measurement equivalence based on sufficient continuity of curriculum and 

assessment across grades K-12 in reading and math that warrants a common scale in each 
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subject. Developmental scales of child achievement had been created using Thurstone 

scaling, but a major advance was made later through test equating based on item response 

theory modeling (see Kolen & Brennan, 2004; Lord, 1980; Wright & Stone, 1979). IRT 

was used for all five tests used for our national norms so that the items measuring 

performance in a particular content domain can be placed on a common scale of 

difficulty, and thus, all scores can be placed on a common achievement scale. The 

validation of a vertical scale requires that curricula be compared across grades to justify 

the exchangeability of tests from one grade to another. The technical reports of all five 

tests provide adequate information on test design and supporting evidence for cross-grade 

vertical scales.
5
   

Even with cross-grade vertical scales, a problem would occur if one is attempting 

to assess the degree of learning gap or effect size in years/months of schooling by making 

reference to a future grade level. We emphasize the pitfalls of this type of 

misinterpretation. For example, the time-indexed effect size of ―two years‖ (d΄=2.0) does 

not mean that the treatment group performs at the same level as the average student of 

two grades above the control group’s current grade level on a test designed for two 

grades higher. Rather, the ―two-year‖ effect size should be interpreted as that, given the 

current rate of growth, it would take about two years worth of schooling time for the 

control group to reach the same end-of-treatment performance level of the treatment 

group on a test suitable for their current grade. 

We also caution that applying national norms to a local study is prone to possible 

misuse and misinterpretation. Norms are not standards. In the past, arguments have been 

forwarded that all students should perform at or above the national norm (e.g., all sixth 
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graders reading at or above the sixth grade equivalent). This kind of inconsistency could 

be avoided if we switch the focus of evaluation from status to growth. Nevertheless, 

application of national norm to a local experimental study is based on the assumption that 

the control group would grow at the same rate as the national norm. If researchers apply 

national norms to estimate typical growth under the control group situation and compare 

it with their own study sample results, they should check construct equivalence between 

norm data and study data; that is, how well the specific test used to measure the effect of 

the intervention aligns with the test used to develop national norms. Further, there should 

be a reasonable match between the study sample and the norm group. Some adaptation of 

national growth norms may be needed based on sample differences (e.g., demographics) 

between the study and national norming sample. 

Lastly, it would have been more desirable to use longitudinal data from the same 

cohort for the entire period of K-12, but there is no such data yet. ECLS-K is available 

only for grades K-8, whereas NELS:88 covers only grades 8-12. We created K-12 growth 

curves and national norms in reading and math achievement by combining K-8 norms 

derived from ECLS-K and grades 8-12 norms derived from NELS:88. Because these two 

datasets were collected from different cohorts at different time periods, the time gap 

between the two datasets may pose potential threat to validity of using them together if 

there were significant change during the interim period. The growth trajectories may have 

changed among different cohorts over the long run. The Educational Longitudinal Study 

2002 (ELS: 2002) has more recent information yet the data are limited to an assessment 

of grades 10 and 12 in math (N = 12,652 students). The comparison of NELS (1990-

1992) and ELS (2002-04) growth norms in terms of grades 10-12 math standardized 
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gains did not detect significant differences between the two cohort groups. Nevertheless, 

potential changes in national academic growth norms, including varying degree of 

progress at different grade levels, remains an issue. A cross-cohort comparison of NAEP 

reading and math achievement gains over the past few decades revealed a tripartite 

pattern where American students have been gaining ground at the pre/early primary 

school level, holding ground at the middle school level, and losing ground at the high 

school level (Lee, 2010). If NCES continues to collect comparable longitudinal data for 

subsequent cohorts, it is feasible to update our national norms of academic growth.  

Summary and Conclusion 

Our current capacity to understand or provide a context for interpreting the size of 

an effect is limited. While estimating treatment effects is a technical issue, interpreting 

the size of an effect is a judgment. Despite the de facto requirement of effect size 

reporting for practical significance in publication, context-free and mechanical effect size 

reporting practices cannot help advance our informed judgment about educational 

program effects without the understanding of developmental context. Conventional effect 

size metrics such as Cohen’s d are standardized group mean differences based on the 

distribution of a student outcome variable at one particular time point. These measures do 

not take into account the aforementioned time dimension—varying length of time needed 

to learn at different age or grade levels. This article proposed a time-indexed effect size 

metric to estimate how long it would take for an ―untreated‖ control group to reach the 

treatment group outcome in terms familiar to educators—years/months of schooling. 

The phenomenon of diminishing rate of growth in reading and math achievement 

has been observed in both cross-sectional and longitudinal national data (see Figures 2 
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and 3). If the achievement gap is declining in content but growing in the time it takes to 

learn that content, which is the accurate characterization of change in the gap? Is the gap 

widening or narrowing? We claim that the answer can be both and make it a central 

argument for the use of time-indexed effect sizes. This approach requires assessing the 

gap on this national growth curve not only from its vertical axis viewpoint (i.e., content 

knowledge/skills measured in standard score units) but also from its horizontal axis 

viewpoint (i.e., time measured in school year units).   

There are challenges and issues for validating and applying this idea to actual 

research. Time-indexed effect size requires information on typical academic growth in 

the control group (experimental research) or the reference group (non-experimental 

comparative research). For research designs using a posttest only, researchers cannot 

directly assess achievement gains but may utilize information from existing test publisher 

norms that provide conventional age- or grade-equivalent metrics. However, the test 

publishers’ norms are based on cross-sectional data of different cohort groups at a single 

year. Moreover, the assumption that the study sample would grow at the same rate as the 

national norms could be erroneous. Therefore, this application is highly prone to errors 

and thus should be accompanied with a strong caveat in order to guard against possible 

misuse and misinterpretation of the national norms. In this case, it is desirable to use our 

longitudinal growth norms that can provide more valid reference of the national average 

growth trajectory for all and subgroups. The findings on the variability of academic 

growth curves among different subgroups of students and schools challenge one-size-fits-

all approach based on conventional GEs. 
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Meanwhile, research with pretest-posttest or repeated measures design affords 

information on achievement gains in the sample so that the researcher can directly 

estimate the control group or reference group’s typical growth rates. However, even when 

local norms can be created with repeated measures, the researchers can still benefit from 

comparing their local norms with comparable national norms in corresponding subjects 

and grades. It would be useful to examine whether the control group or reference group’s 

growth is typical or abnormal in comparison with the national norm group’s growth. 

When the local control or reference group’s growth turns out to fall significantly above or 

below the national norms, the reporting and interpretation of treatment effect size or 

group difference can be revisited and enriched with reference to the national population. 

Applications of the time-indexed effect size d΄ to the two examples of prior 

research provide new insights and raise new questions about the findings. For Project 

STAR, it appears that the effect of small class size on academic achievement does not 

diminish at the upper grades as much as prior research indicated. For Black-White 

achievement gaps, it turns out that the size of gaps widens much faster over the course of 

schooling than prior research suggested. These findings help researchers and evaluators 

become more aware of potential biases and limitations in relying on any single metric for 

strength of effect measures. Through continuing validation, the proposed effect size 

metric presented in school time frame might be a step toward bridging the gap between 

educational research and practice and allowing researchers to communicate their findings 

with educators in more meaningful ways.  
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Appendix.  

Descriptions of test data used for K-12 reading and math achievement growth norms 

 MAT TN SAT ECLS-K NELS:88 

Norming 

Sample 

Norming for 

MAT 8
th

 

edition was 

based on a 

stratified 

nationally 

representative 

sample in 

1999-2000.  

N  ≈ 80,000 for 

both spring and 

fall across 

grades K-12  

Norming for 

TN 2
nd

 edition 

was based on a 

stratified 

nationally 

representative 

sample in 

1999-2000.  

N = 149,798 

for spring and 

N=114,312 for 

fall across 

grades K-12 

 

Norming for 

SAT 10
th

 

edition was 

based on a 

stratified 

nationally 

representative 

sample in 2002. 

N ≈ 250,000 

for spring and 

N ≈  110,000 

for fall across 

grades K-12  

Norming was 

based on a 

stratified 

nationally-

representative 

sample of 

Kindergartners in 

Fall 1998 with 

follow-through 

(spring K, grades 

1, 3, 5, 8).  

N = 5,959 

students.  

Norming was 

based on a 

stratified 

nationally-

representative 

sample of 8th 

graders in 

Spring 1988 

with follow- 

through 

(grades 8, 10 

and 12)  

N = 10,879 

students.  

Test 

Measures 

and 

Reliabilities 

 

Total reading 

includes 

reading 

vocabulary and 

reading 

comprehension; 

Total math 

includes 

concepts & 

problem 

solving and 

computation; 

reliability 

ranges .93-.97 

in reading and 

.91-.94 in math 

Reading 

composite is 

the average of 

reading and 

vocabulary; 

Math 

composite is 

the average of 

math and math 

computation; 

Reliability 

ranges .88-.95 

in reading and 

in math 

Total reading 

includes 

reading 

vocabulary and 

reading 

comprehension; 

Total math 

includes math 

problem 

solving and 

procedures; 

reliability 

ranges .93-.97 

in reading and 

.82-.95 in math 

Reading 

composite covers 

basic reading 

skills, vocabulary, 

and reading 

comprehension 

skills;  

Math composite 

includes number 

operations, 

measurement; 

geometry,  

algebra etc.; 

reliability 

ranges .93-.97 in 

reading and .92-

.95 in math 

Reading 

composite 

covers 

vocabulary 

and reading 

comprehension 

skills; 

Math 

composite 

includes 

algebra, 

geometry,  

and advanced 

topics; 

reliability 

ranges.80-.85 

in reading  and 

ranges .89-.94 

in math 
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Note. The test information and data sources are as follows: 

MAT: Harcourt (2002). Metropolitan8 Form V Technical Manual. San Antonio, TX: 

Author. Appendix J Table J-1 and J-2 (Scaled score summary data by grade). 

TN: CTB/McGraw-Hill (2003). TerraNova 2
nd

 Edition CAT Technical Report. Monterey, 

CA: Author. Table 59 (scale score descriptive statistics form c fall and spring 

reading composite and math composite scores) 

SAT: Harcourt (2004). Stanford Achievement Test 10
th

 Edition Technical Data Report. 

San Antonio, TX: Author. Appendix K Table K-2 to K-29 (Mean scale scores and 

related summary data for grades K-12) 

ECLS-K: National Center for Education Statistics (NCES). Pollack et al. (2005); 

Najarian et al. (2009). 

NELS:88: National Center for Education Statistics (NCES). Rock & Quinn (1995) 
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Table 1 

National Cross-sectional and Longitudinal Data-based Norms of Academic Growth in K-

12 Reading and Math: Standardized Achievement Gains per School Year (10 Months) by 

Grade and Subject 

 
Reading Math 

  (1) (2) (1) (2) 

  

Cross-sectional 

Growth Norms 

gc 

 

Longitudinal 

Growth Norms 

gl 

 

Cross-sectional 

Growth Norms 

gc 

 

Longitudinal 

Growth Norms 

gl 

 

grades 
    K 1.87 1.66 1.24 1.76 

  
    1 1.34 1.76 0.94 1.66 

  
    2 0.86 1.23 1.28 1.27 

  
    3 0.57 0.81 0.96 0.95 

  
    4 0.36 0.54 0.70 0.77 

  
    5 0.34 0.50 0.68 0.73 

  
    6 0.35 0.35 0.60 0.44 

  
    7 0.27 0.27 0.45 0.33 

  
    8 0.20 0.20 0.30 0.22 

  
    9 0.29 0.26 0.41 0.47 

  
    10 0.45 0.40 0.41 0.47 

  
    11 0.27 0.37 0.29 0.67 

  
    12 0.04 0.06 0.06 0.15 
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Table 2

Time-indexed effect sizes based on national norms of academic growth in K-12 reading 

and math: conversion of d (standardized group mean differences) to d΄ (years/months of 

schooling)  

  
Reading 

  
Math 

   
 

d   
 

d   

  small medium large small medium large 

grades 0.2 0.5 0.8 0.2 0.5 0.8 

K 0.1 0.3 0.5 0.1 0.3 0.5 

  
  

  
  

  

1 0.1 0.3 0.5 0.1 0.3 0.5 

  
  

  
  

  

2 0.2 0.4 0.6 0.2 0.4 0.6 

  
  

  
  

  

3 0.2 0.6 1.0 0.2 0.5 0.8 

  
  

  
  

  

4 0.4 0.9 1.5 0.3 0.7 1.0 

  
  

  
  

  

5 0.4 1.0 1.6 0.3 0.7 1.1 

  
  

  
  

  

6 0.6 1.4 2.3 0.5 1.1 1.8 

  
  

  
  

  

7 0.8 1.9 3.0 0.6 1.5 2.4 
  

  
  

  
  

8 1.0 2.5 4.0 0.9 2.2 3.6 
  

  
  

  
  

9 0.8 1.9 3.1 0.4 1.1 1.7 
  

  
  

  
  

10 0.5 1.3 2.0 0.4 1.1 1.7 
  

  
  

  
  

11 0.5 1.3 2.1 0.3 0.8 1.2 
  

  
  

  
  

12 3.4 8.4 13.5 1.3 3.3 5.3 
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Table 3 

National Longitudinal Data-based Norms of Academic Growth in K-12 Reading and 

Math by Race/Ethnicity: Standardized Achievement Gains per School Year (gl) 

    

 
Reading 

  

Math 
 
 
 
 
 
 

Grades 

White 
gl-w 

 

Black 
gl-b 

  

Hispanic 
gl-h 

Asian/ 

Pacific 

Islander 
gl-ap 

American 

Indian/ 

Alaska 

Native 
gl-aa 

White 
gl-w 

 

Black 
gl-b 

  

Hispanic 
gl-h 

Asian/ 

Pacific 

Islander 
gl-ap 

American 

Indian/ 

Alaska 

Native 
gl-aa 

      
 

      
 

    

K 1.67 1.52 1.73 1.80 1.75 1.84 1.45 1.74 1.78 1.96 

  
    

    
   

  

1 1.82 1.54 1.64 1.90 1.62 1.73 1.43 1.61 1.58 1.35 

  
    

    
   

  

2 1.27 1.12 1.22 1.14 0.98 1.30 1.10 1.27 1.40 1.23 

  
    

    
   

  

3 0.84 0.74 0.81 0.75 0.65 0.97 0.82 0.95 1.05 0.92 

  
    

    
   

  

4 0.55 0.48 0.55 0.52 0.74 0.77 0.70 0.80 0.88 0.83 

  
    

    
   

  

5 0.51 0.45 0.51 0.48 0.7 0.74 0.67 0.76 0.84 0.80 

  
    

    
   

  

6 0.35 0.3 0.36 0.38 0.36 0.42 0.51 0.45 0.41 0.42 

  
    

    
   

  

7 0.27 0.23 0.28 0.29 0.28 0.32 0.38 0.33 0.31 0.31 

  
    

    
   

  

8 0.2 0.17 0.21 0.22 0.21 0.22 0.26 0.23 0.21 0.21 

  
    

    
   

  

9 0.27 0.22 0.23 0.29 0.15 0.48 0.39 0.44 0.53 0.37 

  
    

    
   

  

10 0.41 0.34 0.35 0.44 0.23 0.48 0.39 0.44 0.52 0.37 

  
    

    
   

  

11 0.35 0.3 0.43 0.54 0.38 0.64 0.62 0.68 0.76 0.64 

  
    

    
   

  

12 0.06 0.05 0.07 0.09 0.06 0.14 0.14 0.15 0.17 0.14 
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Table 4 

National average White-Black achievement gaps based on NAEP reading and math 

assessments in the units of standard deviation (d) and years/months of schooling (d΄) 

 

Subject 

 

Grade 

Scale 

score 

gap 

 

Standard 

deviation 

Standardized 

gap  

(d) 

Standardized 

gain per year 

for Black  

(gl-b) 

 

Time-

indexed gap 

(d΄) 

Reading  

4 

 

25 

 

35 0.71 

 

.48 1.48 

 

8 

 

27 

 

34 0.79 

 

.17 4.65 

 

12 

 

26 

 

38 0.68 

 

.05 13.6 

Math  

4 

 

26 

 

29 0.90 

 

.70 1.29 

 

8 

 

32 

 

36 0.89 

 

.26 3.42 

 

12 

 

30 

 

34 0.88 

 

.14 6.29 

 

Note.  

The above NAEP assessments were administered in 2009 for grades 4 and 8 and in 2005 

for grade 12. d is obtained by dividing scale score gaps by standard deviations, and d΄ is 

obtained by dividing d by gl-b. 
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Figure 1 

Illustration of a time-indexed effect size (d΄ = T2 – T1) for experimental research with 

pretest-posttest for comparison of achievement (Y) between experimental group (E) and 

control (C) group 

 

  

  

 

 

 

 

 

Time 

Outcome 

Y
E 

0 T1 T2 

E C 

Y
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Figure 2 

K-12 reading national average achievement trajectories based on longitudinal datasets 

(ECLS-K and NELS) and cross-sectional test publisher norms (MAT, SAT, TN)  
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Figure 3 

K-12 math national average achievement trajectories based on longitudinal datasets 

(ECLS-K and NELS) and cross-sectional test publisher norms (MAT, SAT, TN)  
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Figure 4 

Project STAR small class effects in K-3 reading based on d (standard deviation units) in 

the upper panel and d΄ (school year/month units) in the lower panel 
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Figure 5 

Project STAR small class effects in K-3 math based on d (standard deviation units) in the 

upper panel and d΄ (school year/month units) in the lower panel 
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Notes 

1
 This difference is attributable to the fact that GE variance is bound to increase if IRT 

metric shows a pattern of constant within-grade variance and decelerated growth in the 

mean (Yen, 1986; Schulz & Nicewander, 1997). 

2
 ECLS-K and NELS 8

th
 grade tests have close alignment with each other, as both 

adopted similar assessment frameworks and test items (Najarian, Pollack, & Sorongon, 

2009). 

3
 Since sampling designs were similar across the three tests, only sample size differences 

were considered for weighting (see Appendix). Our sensitivity analysis revealed that the 

results of synthesis without use of differential weights were very similar. The growth 

norms were highly convergent among the three tests with any paired correlation 

coefficients at or above .99.  

4
 Forty-seven percent of the STAR kindergarten sample attended rural schools. 

Approximately 48 percent of the STAR students were on free or reduced lunch compared 

to approximately 29 percent of public school students nationally (in 1987-1988).  

Approximately 33 percent of the STAR sample was minorities, of which 98 percent were 

Black.  In contrast, the entire SAT7 spring standardization sample consisted of 22 percent 

minority students of which 55 percent were Black (Psychological Corporation, 1985). 

Similarly, our longitudinal sample (ECLS-K) had 34 percent minority students (47 

percent Black). 

5
 For MAT, TN and SAT, they used equating of levels program in which students took 

two adjacent levels of the tests. MAT 8
th

 edition comprises a battery of fourteen 

overlapping test levels (Harcourt, 2002). TN 2
nd

 edition comprises a battery of twelve 

overlapping test levels (CTB/McGraw-Hill, 2003). SAT 10
th

 edition comprises a battery 

of thirteen overlapping test levels (Harcourt, 2004). For ECLS-K and NELS:88, they both 

used equating based on a common set of anchor items across adjacent grade forms and 

most content areas represented in all grade forms (Najarian et al., 2009, Pollack et al., 

2005; Rock et al., 1995).  


